325 research outputs found

    A Classical Realizability Model arising from a Stable Model of Untyped Lambda Calculus

    Full text link
    We study a classical realizability model (in the sense of J.-L. Krivine) arising from a model of untyped lambda calculus in coherence spaces. We show that this model validates countable choice using bar recursion and bar induction

    Models of Intuitionistic Set Theory in Subtoposes of Nested Realizability Toposes

    Full text link
    With every pca A\mathcal{A} and subpca A#\mathcal{A}_\# we associate the nested realizability topos RT(A,A#)\mathsf{RT}(\mathcal{A},\mathcal{A}_\#) within which we identify a class of small maps S\mathcal{S} giving rise to a model of intuitionistic set theory within RT(A,A#)\mathsf{RT}(\mathcal{A},\mathcal{A}_\#). For every subtopos E\mathcal{E} of such a nested realizability topos we construct an induced class SE\mathcal{S_E} of small maps in E\mathcal{E} giving rise to a model of intuitionistic set theory within E\mathcal{E}. This covers relative realizability toposes, modified relative realizability toposes, the modified realizability topos and van den Berg's recent Herbrand topos

    Classical logic, continuation semantics and abstract machines

    Get PDF
    One of the goals of this paper is to demonstrate that denotational semantics is useful for operational issues like implementation of functional languages by abstract machines. This is exemplified in a tutorial way by studying the case of extensional untyped call-by-name λ-calculus with Felleisen's control operator 𝒞. We derive the transition rules for an abstract machine from a continuation semantics which appears as a generalization of the ¬¬-translation known from logic. The resulting abstract machine appears as an extension of Krivine's machine implementing head reduction. Though the result, namely Krivine's machine, is well known our method of deriving it from continuation semantics is new and applicable to other languages (as e.g. call-by-value variants). Further new results are that Scott's D∞-models are all instances of continuation models. Moreover, we extend our continuation semantics to Parigot's λμ-calculus from which we derive an extension of Krivine's machine for λμ-calculus. The relation between continuation semantics and the abstract machines is made precise by proving computational adequacy results employing an elegant method introduced by Pitts

    Fibred Categories a la Jean Benabou

    Full text link
    These are notes about the theory of Fibred Categories as I have learned it from Jean Benabou. I also have used results from the Thesis of Jean-Luc Moens from 1982 in those sections where I discuss the fibered view of geometric morphisms. Thus, almost all of the contents is not due to me but most of it cannot be found in the literature since Benabou has given many talks on it but most of his work on fibered categories is unpublished. But I am solely responsible for the mistakes and for misrepresentations of his views. And certainly these notes do not cover all the work he has done on fibered categories. I just try to explain the most important notions he has come up with in a way trying to be as close as possible to his intentions and intuitions. I started these notes in 1999 when I gave a course on some of the material at a workshop in Munich. They have developed quite a lot over the years and I have tried to include most of the things I want to remember.Comment: Have added an appendix describing a fibrational account of Lawvere's notion of (stably) precohesive geometric morphism

    Computability in basic quantum mechanics

    Get PDF
    The basic notions of quantum mechanics are formulated in terms of separable infinite dimensional Hilbert space H. In terms of the Hilbert lattice L of closed linear subspaces of H the notions of state and observable can be formulated as kinds of measures as in [21]. The aim of this paper is to show that there is a good notion of computability for these data structures in the sense of Weihrauch’s Type Two Effectivity (TTE) [26]. Instead of explicitly exhibiting admissible representations for the data types under consideration we show that they do live within the category QCB0 which is equivalent to the category AdmRep of admissible representations and continuously realizable maps between them. For this purpose in case of observables we have to replace measures by valuations which allows us to prove an effective version of von Neumann’s Spectral Theorem

    A comonad for Grothendieck fibrations

    Full text link
    We study the 2-category theory of Grothendieck fibrations in the 2-category of functors \ct{Cat}^{\ct{2}}. After redrawing a few general results in that context, we show that fibrations over a given base are pseudo-coalgebras for a 2-comonad on \ct{Cat} / \ct{B}. We use that result to explain how an arbitrary fibration is equivalent to one with a splitting

    Constructive toposes with countable sums as models of constructive set theory

    Get PDF
    AbstractWe define a constructive topos to be a locally cartesian closed pretopos. The terminology is supported by the fact that constructive toposes enjoy a relationship with constructive set theory similar to the relationship between elementary toposes and (impredicative) intuitionistic set theory. This paper elaborates upon one aspect of the relationship between constructive toposes and constructive set theory. We show that any constructive topos with countable coproducts provides a model of a standard constructive set theory, CZFExp (that is, the variant of Aczel’s Constructive Zermelo–Fraenkel set theory CZF obtained by weakening Subset Collection to the Exponentiation axiom). The model is constructed as a category of classes, using ideas derived from Joyal and Moerdijk’s programme of algebraic set theory. A curiosity is that our model always validates the axiom V=Vω1 (in an appropriate formulation). It follows that the full Separation schema is always refuted
    • …
    corecore